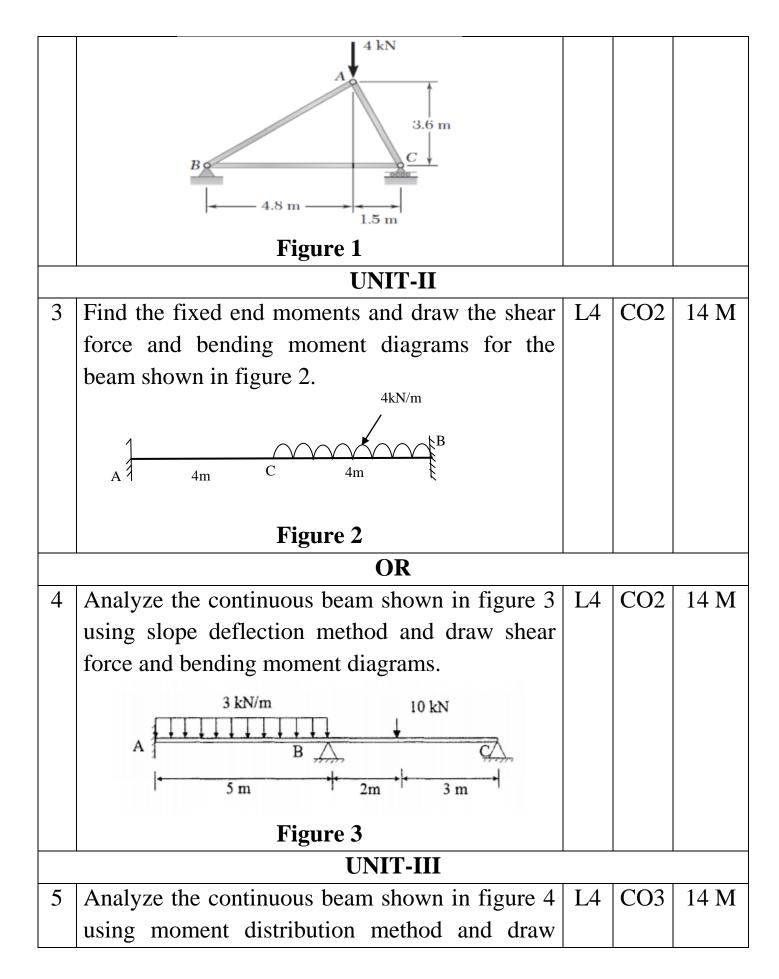
## III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

## STRUCTURAL ANALYSIS (CIVIL ENGINEERING)

**Duration: 3 hours** 

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.


BL – Blooms Level

CO – Course Outcome

|    |                                                                         | BL | CO  | Ivian. |  |  |  |  |
|----|-------------------------------------------------------------------------|----|-----|--------|--|--|--|--|
|    |                                                                         |    |     | Marks  |  |  |  |  |
|    | UNIT-I                                                                  |    |     |        |  |  |  |  |
| 1  | A cantilever beam of length 2 m carries a point                         | L4 | CO1 | 14 M   |  |  |  |  |
|    | load of 20 kN at the free end and another 20 kN $$                      |    |     |        |  |  |  |  |
|    | at its center. If $E= 2x10^5 \text{ N/mm}^2$ and $I= 10^8 \text{ mm}^4$ |    |     |        |  |  |  |  |
|    | for the cantilever, determine the slope and                             |    |     |        |  |  |  |  |
|    | deflection of a cantilever at the free end by                           |    |     |        |  |  |  |  |
|    | moment area method.                                                     |    |     |        |  |  |  |  |
| OR |                                                                         |    |     |        |  |  |  |  |
| 2  | Determine the vertical deflection at joint A of                         | L4 | CO1 | 14 M   |  |  |  |  |
|    | the truss as shown in figure 1. Take $E= 2x10^5$                        |    |     |        |  |  |  |  |
|    | $N\!/mm^2$ and sectional area of each member                            |    |     |        |  |  |  |  |
|    | $A=100 \times 10^{-6} m^2$ .                                            |    |     |        |  |  |  |  |

Max.

Max. Marks: 70



|   | shear force and bending moment diagrams.                                                                                                                                                                                                                                                                                                                                                           |    |     |      |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|------|
|   | E is constant.                                                                                                                                                                                                                                                                                                                                                                                     |    |     |      |
|   | $200 \text{ kN} \qquad 200 \text{ kN}$ $A \xrightarrow{I} \xrightarrow{C} \xrightarrow{I} \xrightarrow{D} \xrightarrow{D} \xrightarrow{E}$ $A \xrightarrow{I} \xrightarrow{B} \xrightarrow{D} \xrightarrow{D} \xrightarrow{D} \xrightarrow{D} \xrightarrow{D}$ $A \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I}$ |    |     |      |
|   | Figure 4<br>OR                                                                                                                                                                                                                                                                                                                                                                                     |    |     |      |
| 6 | Analyze the continuous beam shown in figure 5<br>using Kani's method and draw shear force and<br>bending moment diagrams.<br>10m + 10m + 8m + Figure 5                                                                                                                                                                                                                                             | L4 | CO3 | 14 M |
|   | UNIT-IV                                                                                                                                                                                                                                                                                                                                                                                            | 1  | 1 1 |      |
| 7 | <ul> <li>a) Derive the equation for Euler's crippling load for a column of length 'L' with one end fixed and other end free, subjected to an axial load of 'P' at the free end.</li> </ul>                                                                                                                                                                                                         |    | CO4 | 7 M  |
|   | b) A straight circular bar of steel 1 cm<br>diameter and 120 cm long is mounted in<br>testing machine and loaded axially in<br>compression till it buckles. Estimate the<br>buckling load of column, if both ends are<br>pinned take $E=2*10^5$ N/mm <sup>2</sup> .                                                                                                                                | L3 | CO4 | 7 M  |

|    | OR                                                                       |    |     |      |  |  |
|----|--------------------------------------------------------------------------|----|-----|------|--|--|
| 8  | The external and internal diameters of the                               | L4 | CO4 | 14 M |  |  |
|    | hollow cast iron column are 5 cm and 4 cm                                |    |     |      |  |  |
|    | respectively. If the length of the column is 3 m                         |    |     |      |  |  |
|    | and both its ends are fixed, determine the                               |    |     |      |  |  |
|    | crippling load using Rankine's formula. Also                             |    |     |      |  |  |
|    | compare Euler's critical load with Rankine's                             |    |     |      |  |  |
|    | critical load. Take $\sigma_c$ =550 N/mm <sup>2</sup> , $\alpha$ =1/1600 |    |     |      |  |  |
|    | and E=8 x $10^4$ N/mm <sup>2</sup> .                                     |    |     |      |  |  |
|    | UNIT-V                                                                   |    |     |      |  |  |
| 9  | A cylindrical vessel whose ends are closed by                            | L4 | CO5 | 14 M |  |  |
|    | means of rigid flange plates made of steel plate                         |    |     |      |  |  |
|    | 3 mm thick. The length and the internal diameter                         |    |     |      |  |  |
|    | of the vessel are 50 cm and 25 cm respectively.                          |    |     |      |  |  |
|    | Determine the longitudinal and hoop stresses in                          |    |     |      |  |  |
|    | the cylindrical shell due to an internal fluid                           |    |     |      |  |  |
|    | pressure of 3 N/mm <sup>2</sup> . Also calculate the increase            |    |     |      |  |  |
|    | in length, diameter and volume of the vessel.                            |    |     |      |  |  |
|    | Take $E = 2x10^5 \text{ N/mm}^2$ and $\mu = 0.3$ .                       |    |     |      |  |  |
| OR |                                                                          |    |     |      |  |  |
| 10 | A steel tube of 300 mm external diameter is to                           | L4 | CO5 | 14 M |  |  |
|    | be shrunk on to another steel tube of 150 mm                             |    |     |      |  |  |
|    | internal diameter. The diameter at the junction                          |    |     |      |  |  |
|    | after shrinking is 220 mm. The radial pressure at                        |    |     |      |  |  |
|    | the common junction is 28 N/mm <sup>2</sup> . Find the                   |    |     |      |  |  |
|    | final stresses setup across the section, when                            |    |     |      |  |  |
|    | compound cylinder is subjected to an internal                            |    |     |      |  |  |
|    | fluid pressure of 90 N/mm <sup>2</sup> .                                 |    |     |      |  |  |